BERKELEY, CA — Standard magnetic resonance imaging, MRI, is a superb diagnostic tool but one that suffers from low sensitivity, requiring patients to remain motionless for long periods of time inside noisy, claustrophobic machines. A promising new MRI method, much faster, more selective — able to distinguish even among specific target molecules — and many thousands of times more sensitive, has now been developed in the laboratory by researchers at the Department of Energy's Lawrence Berkeley National Laboratory and the University of California at Berkeley.
The key to the new technique is called "temperature-controlled molecular depolarization gates." It builds on a series of previous developments in MRI and the closely related field of nuclear magnetic resonance, NMR (which instead of an image yields a spectrum of molecular information), by members of the laboratories of Alexander Pines and David Wemmer at Berkeley Lab and UC Berkeley.
source: Berkeley Lab
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment